Correct option is : (1) 1
\(\sqrt{1-\left(y^{\prime}(x)\right)^{2}}=y(x)\)
\(1-\left(\frac{d y}{d x}\right)^{2}=y^{2}\)
\(\left(\frac{d y}{d x}\right)^{2}=1-y^{2}\)
\(\frac{d y}{\sqrt{1-y^{2}}}=d x\) OR \(\frac{d y}{\sqrt{1-y^{2}}}=-d x\)
\(\Rightarrow \sin ^{-1} y=x+c,\ \sin ^{-1} y=-x+c\)
\(\mathrm{x}=0, \ \mathrm{y}=0 \Rightarrow \mathrm{c}=0\)
\(\sin ^{-1} y=x, \ \text{as} \ y \geq 0\)
\(\sin x=y\)
\(\Rightarrow \frac{d y}{d x}=\cos x\)
\(\frac{\mathrm{d}^{2} \mathrm{y}}{\mathrm{dx}^{2}}=-\sin \mathrm{x}\)
\(\Rightarrow-\sin x+\sin x+1=1\)