Correct option is : (1) 12

\(
\operatorname{Re}\left(\frac{z-2 i}{z+2 i}\right)=0
\)
Let \(\mathrm{z}=\mathrm{x}+\mathrm{iy}\)
\(
\frac{x+i y-2 i}{x+i y+2 i} \Rightarrow \frac{x+i(y-2)}{x+i(y+2)}
\)
Rationalizing
\(
\begin{aligned}
\Rightarrow \frac{x+i(y-2)}{x+i(y+2)} \times \frac{x-i(y+2)}{x-i(y+2)}
\end{aligned}
\)
\(
\begin{aligned}
\Rightarrow \frac{x^2+\left(y^2-4\right)+i(x y-2 x-x y-2 x)}{x^2+(y+2)^2}
\end{aligned}
\)
Now, \(\operatorname{Re}\left(\frac{z-2 i}{z+2 i}\right)=0\)
\(
\begin{aligned}
& \therefore \frac{x^2+y^2-4}{x^2+(y+2)^2}=0
\end{aligned}
\)
\(
\begin{aligned}
x^2+y^2=4 \text { (circle) }
\end{aligned}
\)
Maximum value of |z – (6 + 8i)| means Maximum distance of point (6, 8) from the circle \(\text{x}^2\) + \(\text{y}^2\) = 4 Max. distance = OP + r = 10 + 2 = 12