Correct option is (4) \(\frac{1}{\sqrt{2}} \tan ^{-1}\left(-\frac{1}{2}\right)\)
\(\mathrm {y(x)=\int \frac{\left(1+\sin ^{2} x\right) \cos x}{1+\sin ^{4} x} d x}\)
Put \(\sin \mathrm{x}=\mathrm{t}\)
\(=\int \frac{1+\mathrm{t}^{2}}{\mathrm{t}^{4}+1} \mathrm{dt}=\frac{1}{\sqrt{2}} \tan ^{-1} \frac{\left(\mathrm{t}-\frac{1}{\mathrm{t}}\right)}{\sqrt{2}}+\mathrm{C}\)
\(\mathrm{x}=\frac{\pi}{2}, \mathrm{t}=1 \quad \therefore \mathrm{C}=0\)
\(\mathrm y\left(\frac{\pi}{4}\right)=\frac{1}{\sqrt{2}} \tan ^{-1}\left(-\frac{1}{2}\right)\)