Use app×
QUIZARD
QUIZARD
JEE MAIN 2026 Crash Course
NEET 2026 Crash Course
CLASS 12 FOUNDATION COURSE
CLASS 10 FOUNDATION COURSE
CLASS 9 FOUNDATION COURSE
CLASS 8 FOUNDATION COURSE
0 votes
17.3k views
in Mathematics by (50.1k points)
closed by

For \(\mathrm{x} \in\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)\), if \(\mathrm {y(x)=\int \frac{\operatorname{cosec} x+\sin x}{\operatorname{cosec} x \sec x+\tan x \sin ^{2} x} d x}\) and \(\mathrm{\lim\limits _{x \rightarrow\left(\frac{\pi}{2}\right)^{-}} y(x)=0}\) then \(\mathrm{y\left(\frac{\pi}{4}\right)}\) is equal to

(1) \(\tan ^{-1}\left(\frac{1}{\sqrt{2}}\right)\)

(2) \(\frac{1}{2} \tan ^{-1}\left(\frac{1}{\sqrt{2}}\right)\)

(3) \(-\frac{1}{\sqrt{2}} \tan ^{-1}\left(\frac{1}{\sqrt{2}}\right)\)

(4) \(\frac{1}{\sqrt{2}} \tan ^{-1}\left(-\frac{1}{2}\right)\)

1 Answer

+1 vote
by (50.3k points)
selected by
 
Best answer

Correct option is (4) \(\frac{1}{\sqrt{2}} \tan ^{-1}\left(-\frac{1}{2}\right)\) 

\(\mathrm {y(x)=\int \frac{\left(1+\sin ^{2} x\right) \cos x}{1+\sin ^{4} x} d x}\)

Put \(\sin \mathrm{x}=\mathrm{t}\)

\(=\int \frac{1+\mathrm{t}^{2}}{\mathrm{t}^{4}+1} \mathrm{dt}=\frac{1}{\sqrt{2}} \tan ^{-1} \frac{\left(\mathrm{t}-\frac{1}{\mathrm{t}}\right)}{\sqrt{2}}+\mathrm{C}\)

\(\mathrm{x}=\frac{\pi}{2}, \mathrm{t}=1 \quad \therefore \mathrm{C}=0\)

\(\mathrm y\left(\frac{\pi}{4}\right)=\frac{1}{\sqrt{2}} \tan ^{-1}\left(-\frac{1}{2}\right)\)

Welcome to Sarthaks eConnect: A unique platform where students can interact with teachers/experts/students to get solutions to their queries. Students (upto class 10+2) preparing for All Government Exams, CBSE Board Exam, ICSE Board Exam, State Board Exam, JEE (Mains+Advance) and NEET can ask questions from any subject and get quick answers by subject teachers/ experts/mentors/students.

...