Correct option is (3) 8
\(f(x)=\int\limits_{-x}^x|t|-t^2 e^{-t^2} d t\)
\(g(x)=\int\limits_0^{x^2} t^{\frac{1}{2}} e^{-t} d t \)
\(f(x)=2 \int\limits_0^x\left(t-t^2\right) e^{-t^2} d t\)
\( f(x)=2\left[\int\limits_0^x t^{-t^2} d t-\int\limits_0^x t^2 e^{-t^2} d t\right]\)
\(g(x)=\int\limits_0^{x^2} \sqrt{t} e^{-t} d t \quad \sqrt{t}=y \Rightarrow \frac{d t}{2 \sqrt{t}}=d y \)
\(g(x)=2 \int\limits_0^x y^2 \cdot e^{-y^2} d y \)
\(f(x)+g(x)=2\left(\frac{1-e^{-x^2}}{2}\right) \)
\(=1-e^{-x^2} \)
\(\Rightarrow 9\left(f\left(\sqrt{\log _e 9}\right)+g\left(\sqrt{\log _e 9}\right)\right)=9 \times\left(1-\frac{1}{9}\right)\)
\(=9 \times \frac{8}{9}=8\)