Use app×
QUIZARD
QUIZARD
JEE MAIN 2026 Crash Course
NEET 2026 Crash Course
CLASS 12 FOUNDATION COURSE
CLASS 10 FOUNDATION COURSE
CLASS 9 FOUNDATION COURSE
CLASS 8 FOUNDATION COURSE
+1 vote
10.3k views
in Mathematics by (50.3k points)
closed by

Let \(\mathrm{f}, \mathrm{g}:(0, \infty) \rightarrow \mathrm{R}\) be two functions defined by \(f(x)=\int\limits_{-x}^{x}\left(|t|-t^{2}\right) e^{-t^{2}} d t\) and \(g(x)=\int\limits_{0}^{x^{2}} t^{1 / 2} e^{-t} d t\). Then the value of \(\left(f\left(\sqrt{\log _{e} 9}\right)+g\left(\sqrt{\log _{e} 9}\right)\right)\) is equal to

(1) 6

(2) 9

(3) 8

(4) 10

1 Answer

+2 votes
by (50.1k points)
selected by
 
Best answer

Correct option is (3) 8

\(f(x)=\int\limits_{-x}^x|t|-t^2 e^{-t^2} d t\)

\(g(x)=\int\limits_0^{x^2} t^{\frac{1}{2}} e^{-t} d t \)

\(f(x)=2 \int\limits_0^x\left(t-t^2\right) e^{-t^2} d t\)

\( f(x)=2\left[\int\limits_0^x t^{-t^2} d t-\int\limits_0^x t^2 e^{-t^2} d t\right]\)

\(g(x)=\int\limits_0^{x^2} \sqrt{t} e^{-t} d t \quad \sqrt{t}=y \Rightarrow \frac{d t}{2 \sqrt{t}}=d y \)

\(g(x)=2 \int\limits_0^x y^2 \cdot e^{-y^2} d y \)

\(f(x)+g(x)=2\left(\frac{1-e^{-x^2}}{2}\right) \)

\(=1-e^{-x^2} \)

\(\Rightarrow 9\left(f\left(\sqrt{\log _e 9}\right)+g\left(\sqrt{\log _e 9}\right)\right)=9 \times\left(1-\frac{1}{9}\right)\)

\(=9 \times \frac{8}{9}=8\)

Welcome to Sarthaks eConnect: A unique platform where students can interact with teachers/experts/students to get solutions to their queries. Students (upto class 10+2) preparing for All Government Exams, CBSE Board Exam, ICSE Board Exam, State Board Exam, JEE (Mains+Advance) and NEET can ask questions from any subject and get quick answers by subject teachers/ experts/mentors/students.

...