Correct answer: 219
\( F(x)=\int\limits_{0}^{x} t \cdot f(t) d t\)
\( F^{1}(x)=x f(x)\)
\(\text {Given } \mathrm{F}\left(\mathrm{x}^{2}\right)=\mathrm{x}^{4}+\mathrm{x}^{5}, \quad \text { let } \mathrm{x}^{2}=\mathrm{t}\)
\(\mathrm{F}(\mathrm{t})=\mathrm{t}^{2}+\mathrm{t}^{5 / 2}\)
\(F^{\prime}(t)=2 t+5 / 2 t^{3 / 2}\)
\( t \cdot f(t)=2 t+5 / 2 t^{3 / 2}\)
\(f(t)=2+5 / 2 r^{1 / 2}\)
\( \sum\limits_{r=1}^{12} f\left(r^{2}\right)=\sum\limits_{r=1}^{12} 2+\frac{5}{2} r \)
\(=24+5 / 2\left[\frac{12(13)}{2}\right]\)
\(=219\)