Correct option is (3) 1
\(f:(0, \infty) \rightarrow R\)
\(f(x)=e^{-\left|\log _{e} x\right|}\)
\(f(x)=\frac{1}{e^{|\ln x|}}=\left\{\begin{array}{l}\frac{1}{e^{-\ln x}} ; 0<x<1 \\ \frac{1}{e^{\ln x}} ; x \geq 1\end{array}\right.\)
\(=\left\{\begin{array}{l}\frac{1}{\frac 1x}=x ; 0<x<1 \\ \frac{1}{x}, x \geq 1\end{array}\right.\)

\(\mathrm{m}=0\) (No point at which function is not continuous)
\(\mathrm{n}=1\) (Not differentiable)
\(\therefore \mathrm{m}+\mathrm{n}=1\)