Correct answer: 36
\(\left(a^{2}+b^{2}\right) x^{2}-2 b(a+c) x+b^{2}+c^{2}=0\)
\((\mathrm{ax}-\mathrm{b})^{2}+(\mathrm{bx}-\mathrm{c})^{2}=0\)
\(x = \frac ba, x = \frac cb\)
Now

\(\mathrm{b}^2=\mathrm{ac}\)
\(|\mathrm{a}-\mathrm{c}|<\mathrm{b}<\mathrm{a}+\mathrm{c} \quad\quad\mathrm{b}^2=\mathrm{ac} \times \frac{\mathrm{a}}{\mathrm{a}}\)
\(\left|1-\frac{\mathrm{c}}{\mathrm{a}}\right|<\frac{\mathrm{b}}{\mathrm{a}}<1+\frac{\mathrm{c}}{\mathrm{a}} \quad \quad\frac{\mathrm{b}^2}{\mathrm{a}^2}=\frac{\mathrm{c}}{\mathrm{a}} \)
\(\left|1-\frac{\mathrm{c}}{\mathrm{a}}\right|<\mathrm{x}<1+\frac{\mathrm{c}}{\mathrm{a}} \quad\quad\mathrm{x}^2=\frac{\mathrm{c}}{\mathrm{a}} \)
\(\left|1-\mathrm{x}^2\right|<\mathrm{x}<1+\mathrm{x}^2 \)
Case I: \(\mathrm{x}<1+\mathrm{x}^2\)
always +ve
Case II: \(\left|1-x^2\right|<x\)
\(-\mathrm{x}<1-\mathrm{x}^2<\mathrm{x}\)
Now
\(1-x^2<x \)
\(x^2+x-1>0\)
\( x=\frac{-1 \pm \sqrt{5}}{2}\)
Now
\(-x<1-x^2\)
\(x^2-x-1<0 \)
\(x=\frac{1 \pm \sqrt{5}}{2}\)

\( \Rightarrow \alpha=\frac{-1 +\sqrt{5}}{2}, \beta=\frac{1+\sqrt{5}}{2}\)
Now
\(12\left(\alpha^{2}+\beta^{2}\right) = 12 \left( \left(\frac{-1 + \sqrt 5}2 \right)^2 + \left(\frac{1 + \sqrt 5}2 \right)^2 \right)\)
\(=12\left(\frac{(-1+\sqrt{5})^{2}+(1+\sqrt{5})^{2}}{4}\right)\)
\(=36\)