Correct option is (1) 0
\(I=\int\limits_0^1\left(2 x^3-3 x^2-x+1\right)^{1 / 3} \cdot d x \)
Applying king replace \(x \rightarrow(1-x) \)
\( I=\int\limits_0^1\left[2(1-x)^3-3(1-x)^2-(1-x)+1\right]^{1 / 3} \cdot d x\)
\( I=\int\limits_0^1\left[2-2 x^3-6 x+6 x^2-3-3 x^2+6 x-1+x+1\right]^{1 / 3} \cdot d x\)
\(I=\int\limits_0^1\left[-2 x^3+3 x^2+x-1\right]^{1 / 3} \cdot d x\)
\(I=-\int\limits_0^1\left[2 x^3-3 x^2-x+1\right]^{1 / 3} \cdot d x\)
\(I=-I\)
\(2 I=0 \Rightarrow I=0\)