Correct option is (2) Only \(\mathrm R_{2}\) is an equivalence relation
\(\mathrm{aR}_{1} \mathrm{~b} \Leftrightarrow \mathrm{a}^{2}+\mathrm{b}^{2}=1 ; \mathrm{a}, \mathrm{b} \in \mathrm{R}\)
\((\mathrm{a}, \mathrm{b}) \mathrm{R}_{2}(\mathrm{c}, \mathrm{d}) \Leftrightarrow \mathrm{a}+\mathrm{d}=\mathrm{b}+\mathrm{c} ;(\mathrm{a}, \mathrm{b}),(\mathrm{c}, \mathrm{d}) \in \mathrm{N}\)
for \(\mathrm R_{1}\): Not reflexive symmetric not transitive
for \(\mathrm R_{2}\): \(\mathrm R_{2}\) is reflexive, symmetric and transitive
Hence only \(\mathrm R_{2}\) is equivalence relation.