Correct option is (C) \(\vec a .\vec b \le |\vec a| |\vec b|\)
Let us assume \(\vec a \ne \vec 0\) and \(\vec b \ne \vec 0\)
\(\vec a. \vec b = |\vec a| |\vec b| \cos \theta\)
Taking modulus on both sides then we get,
\(|\vec a. \vec b| = |\vec a| |\vec b| |\cos \theta|\)
\(|\cos \theta| = \frac{|\vec a.\vec b|}{|\vec a||\vec b|}\)
As we know that \(0 \le |\cos \theta| \le 1\)
\(\frac{|\vec a.\vec b|}{|\vec a||\vec b|}\le 1\)
Therefore, \(|\vec a .\vec b| \le |\vec a| |\vec b|\)