Use app×
QUIZARD
QUIZARD
JEE MAIN 2026 Crash Course
NEET 2026 Crash Course
CLASS 12 FOUNDATION COURSE
CLASS 10 FOUNDATION COURSE
CLASS 9 FOUNDATION COURSE
CLASS 8 FOUNDATION COURSE
0 votes
243 views
in Mathematics by (50.3k points)
closed by

\(f(x) = \begin{cases} |x| + 3, &\text{if } x \le -3\\-2x, & \text{if }-3< x<3\\6x +2, & \text{if } x \ge 3\end{cases}\)

द्वारा परिभाषित फलन के असांतत्यता के बिंदुओं की संख्या है

(A) 0

(B) 1

(C) 2

(D) अनन्त

1 Answer

+1 vote
by (50.1k points)
selected by
 
Best answer

सही विकल्प है (B) 1

Given \(f(x) = \begin{cases} |x| + 3, &\text{if } x \le -3\\-2x, & \text{if }-3< x<3\\6x +2, & \text{if } x \ge 3\end{cases}\)

When x = -3

If f(x) is continuous for x = -3 then

\(\lim\limits_{x\to 3^-}f(x) = \lim\limits_{x \to -3^+} f(x) = f(-3)\)

Finding L.H.L.

\(\lim\limits_{x\to 3^-} |x| + 3\)

\(= \lim\limits_{h\to 0} |-3-h| +3\)

Putting h = 0 then we get,

= |-3 - 0| + 3

= |-3| + 3

= 6

Finding R.H.L.

\(\lim\limits_{x \to -3^+} -2x = \lim\limits_{h \to 0} - 2(-3 +h)\)

\(= \lim\limits_{h\to 0} 6 -2h\)

Putting h = 0 then we get,

= 6 - 2 \(\times\) 0

= 6

Find f(x) at x = -3

f(-3) = |-3| + 3 = 6

Hence, \(\lim\limits_{x\to 3^-}f(x) = \lim\limits_{x \to -3^+} f(x) = f(-3)\)

Therefore, the function f(x) is continuous at x = -3.

When x = 3

If f(x) is continuous for x = 3 then

\(\lim\limits_{x\to 3^-}f(x) = \lim\limits_{x \to -3^+} f(x) = f(3)\)

Finding L.H.L.

\(\lim\limits_{x\to 3^-}-2x = \lim\limits_{h \to 0} - 2(-3 -h)\)

\(= \lim\limits_{h\to 0} -6 +2h\)

Putting h=0 then we get,

= -6 + 2 \(\times\) 0

= -6

Finding R.H.L.

\(\lim\limits_{x \to -3^+} 6x+ 2 = \lim\limits_{h \to 0} 6(3 + h ) +2\)

\(= \lim\limits_{h\to 0} 18 + 6h + 2\)

Putting h = 0 then we get,

= 18 + 6 \(\times\) 0 + 2

= 20

Find f(x) at x = 3

f(3) = 6x + 2 at x = 3

f(3) = 6 \(\times\) 3 + 2 = 20

Hence, \(\lim\limits_{x\to 3^-}f(x) \ne \lim\limits_{x \to -3^+} f(x) = f(-3)\)

Therefore, the function

f(x) is discontinuous at x = 3

When x < -3,

For x < -3, f(x) = |x| + 3

Since the function f(x) = |x| + 3 is a modulus function so it is continuous.

∴ f(x) is continuous for x < -3

When x > 3,

For x > 3, f(x) = 6x + 2

Since the function f(x) = 6x + 2 is a polynomial so it is continuous.

∴ f(x) is continuous for x > 3

When -3 < x < 3

For -3 < x < 3, f(x) = -2x

Since the function f(x) = -2x is a polynomial so it is continuous.

∴ f(x) is continuous for -3 < x < 3

∴ \(f(x) = \begin{cases} |x| + 3, &\text{if } x \le -3\\-2x, & \text{if }-3< x<3\\6x +2, & \text{if } x \ge 3\end{cases}\) discontinuous at x = 3 only.

Related questions

Welcome to Sarthaks eConnect: A unique platform where students can interact with teachers/experts/students to get solutions to their queries. Students (upto class 10+2) preparing for All Government Exams, CBSE Board Exam, ICSE Board Exam, State Board Exam, JEE (Mains+Advance) and NEET can ask questions from any subject and get quick answers by subject teachers/ experts/mentors/students.

Categories

...