Correct option is (3) \(\frac{5 \pi}{24}\)
\(\left|\begin{array}{ccc}
1 & \sqrt{2} \sin \alpha & \sqrt{2} \cos \alpha \\
1 & \sin \alpha & -\cos \alpha \\
1 & \cos \alpha & \sin \alpha
\end{array}\right|=0 \\\)
\(\Rightarrow 1-\sqrt{2} \sin \alpha(\sin \alpha+\cos \alpha)+\sqrt{2} \cos \alpha(\cos \alpha-\sin \alpha)=0\)
\( \Rightarrow 1+\sqrt{2} \cos 2 \alpha-\sqrt{2} \sin 2 \alpha=0 \)
\(\cos 2 \alpha-\sin 2 \alpha=-\frac{1}{\sqrt{2}}\)
\(\cos \left(2 \alpha+\frac{\pi}{4}\right)=-\frac{1}{2} \)
\( 2 \alpha+\frac{\pi}{4}=2 \mathrm{n} \pi \pm \frac{2 \pi}{3} \)
\( \alpha+\frac{\pi}{8}=\mathrm{n} \pi \pm \frac{\pi}{3}\)
\(\mathrm{n}=0\)
\(x=\frac{\pi}{3}-\frac{\pi}{8}=\frac{5 \pi}{24}\)