Correct option is (4) 163
\(p^{2}=2 q\)
\(2=a+6 d \quad \ldots(i)\)
\(\mathrm{q}=\mathrm{a}+12 \mathrm{~d} \quad ....(ii)\)
\(\mathrm{q}=\mathrm{a}+12 \mathrm{~d} \quad ....(iii)\)
\(\mathrm{p}-2=\mathrm{d} \quad ((ii) - (i))\)
\(\mathrm{q}-\mathrm{p}=5 \mathrm{~d} \quad((ii) - (i))\)
\(q-p=5(p-2)\)
\(q=6 p-10\)
\(\mathrm{p}^{2}=2(6 \mathrm{p}-10)\)
\(\mathrm{p}^{2}-12 \mathrm{p}+20=0\)
\(\mathrm{p}=10,2\)
\(p=10 ; q=50\)
\(\mathrm{d}=8\)
\(a=-46\)
\(2, 10, 50, 250, 1250\)
\(a r^{4}=a+(n-1) d\)
\(1250=-46+(n-1) 8\)
\(\mathrm{n}=163\)