Correct option is (4) \(\frac{\sqrt{2}}{3} \hat{\mathrm{i}}-\frac{1}{2} \hat{\mathrm{k}}\)
\(\overrightarrow{\mathrm{C}}=\mathrm{C}_{1} \hat{\mathrm{i}}+\mathrm{C}_{2} \hat{\mathrm{j}}+\mathrm{C}_{3} \hat{\mathrm{k}}\)
\(\mathrm{C}_{1}^{2}+\mathrm{C}_{2}^{2}+\mathrm{C}_{3}^{2}=1\)
\(\overrightarrow{\mathrm{C}} \cdot(2 \hat{\mathrm{i}}+2 \hat{\mathrm{j}}-\hat{\mathrm{k}})=|\mathrm{C}| \sqrt{9} \cos 60^{\circ}\)
\(2 \mathrm{C}_{1}+2 \mathrm{C}_{2}-\mathrm{C}_{3}=\frac{3}{2}\)
\(\mathrm{C}_{1}-\mathrm{C}_{3}=1\)
\(\mathrm{C}_{1}+2 \mathrm{C}_{2}=\frac{1}{2}\)
\(\mathrm{C}_{1}=\frac{\sqrt{2}}{3}+\frac{1}{2}\)
\(\mathrm{C}_{2}=\frac{-1}{3 \sqrt{2}}\)
\(\mathrm{C}_{3}=\frac{\sqrt{2}}{3}-\frac{1}{2}\)