Correct option is (4) 11
\(\vec{\mathrm{d}}=\lambda(\vec{\mathrm{b}}+\vec{\mathrm{c}})\)
\(\vec{a} . \vec{d}=\lambda(\vec{b} . \vec{a}+\vec{c} . \vec{a})\)
\(1=\lambda(1+\mathrm{x}+5)\)
\(1=\lambda(\mathrm{x}+6)\)
\(|\vec{\mathrm{d}}|=1 \quad \frac{1}{\lambda}=\mathrm{x}+6\)
\(|\lambda(\vec{\mathrm{b}}+\vec{\mathrm{c}})|=1\)
\(|\lambda((x+2) \hat{i}+6 \hat{j}-2 \hat{k})|=1\)
\(\lambda^{2}\left((x+2)^{2}+6^{2}+2^{2}\right)=1\)
\(\mathrm{x}^{2}+4 \mathrm{x}+4+36+4=(\mathrm{x}+6)^{2}\)
\(\mathrm{x}^{2}+4 \mathrm{x}+44=\mathrm{x}^{2}+12 \mathrm{x}+36\)
\(8 \mathrm{x}=8, \mathrm{x}=1\)
\(\left|\begin{array}{ccc}1 & 1 & 1 \\ 2 & 4 & -5 \\ x & 2 & 3\end{array}\right|=(\vec{a} \times \vec{b}) \cdot \vec{c}\)
\(\left|\begin{array}{ccc}0 & 0 & 1 \\ -2 & 9 & -4 \\ x-2 & -1 & 3\end{array}\right|=2-9(x-2)\)
\(=20-9 \mathrm{x}\)
At \(\mathrm{x}=1\)
\(20-9=11\)