Correct option is (4) \(\frac{\pi}{32}\)
\(\frac{d y}{d x}+y\left(\frac{2 x^{3}+8 x}{\left(x^{2}+4\right)^{2}}\right)=\frac{2}{\left(x^{2}+4\right)^{2}}\)
\(\frac{d y}{d x}+y\left(\frac{2 x}{x^{2}+4}\right)=\frac{2}{\left(x^{2}+4\right)^{2}}\)
\(\mathrm {I F}=e^{\int \frac{2 x}{x^{2}+4} d x}\)
\(\mathrm{IF}=\mathrm{x}^{2}+4\)
\(y \times\left(x^{2}+4\right)=\int \frac{2}{\left(x^{2}+4\right)^{2}} \times\left(x^{2}+4\right)\)
\(y\left(x^{2}+4\right)=2 \int \frac{d x}{x^{2}+2^{2}}\)
\(y\left(x^{2}+4\right)=\frac{2}{2} \tan ^{-1}\left(\frac{x}{2}\right)+c\)
\(0=0+\mathrm{c}=\mathrm{c}=0\)
\(y\left(x^{2}+4\right)=\tan ^{-1}\left(\frac{x}{2}\right)\)
y at \(x=2\)
\(y(4+4)=\tan ^{-1}(1)\)
\(y(2)=\frac{\pi}{32}\)