Use app×
QUIZARD
QUIZARD
JEE MAIN 2026 Crash Course
NEET 2026 Crash Course
CLASS 12 FOUNDATION COURSE
CLASS 10 FOUNDATION COURSE
CLASS 9 FOUNDATION COURSE
CLASS 8 FOUNDATION COURSE
0 votes
11.8k views
in Mathematics by (50.1k points)
closed by

Let \(\mathrm{P}\) the point of intersection of the lines

\(\frac{x-2}{1}=\frac{y-4}{5}=\frac{z-2}{1}\) and \(\frac{x-3}{2}=\frac{y-2}{3}=\frac{z-3}{2}\).

Then, the shortest distance of \(\mathrm{P}\) from the line \(4 \mathrm{x}=2 \mathrm{y}=\mathrm{z}\) is

(1) \(\frac{5 \sqrt{14}}{7}\)

(2) \(\frac{\sqrt{14}}{7}\)

(3) \(\frac{3 \sqrt{14}}{7}\)

(4) \(\frac{6 \sqrt{14}}{7}\)

1 Answer

+1 vote
by (50.3k points)
selected by
 
Best answer

Correct option is (3) \(\frac{3 \sqrt{14}}{7}\)

Shortest distance of P from the line

\(\mathrm{L}_{1} \equiv \frac{\mathrm{x}-2}{1}=\frac{\mathrm{y}-4}{5}=\frac{\mathrm{z}-2}{1}=\lambda\)

\(\mathrm{P}(\lambda+2,5 \lambda+4, \lambda+2)\)

\(\mathrm{L}_{2} \equiv \frac{\mathrm{x}-3}{2}=\frac{\mathrm{y}-2}{3}=\frac{\mathrm{z}-3}{2}\)

\(\mathrm{P}(2 \mu+3,3 \mu+2,2 \mu+3)\)

\(\lambda+2=2 \mu+3\)

\(\lambda=2 \mu+1\)

\(3 \mu+2=5 \lambda+4\)

\(3 \mu=5 \lambda+2\)

\(3 \mu=5(2 \mu+1)+2\)

\(3 \mu=10 \mu+7\)

\(\mu=-1 , \lambda=-1\)

Both satisfies (P)

\(\mathrm{P}(1,-1,1)\)

\(\mathrm{L}_{3} \equiv \frac{\mathrm{x}}{1 / 4}=\frac{\mathrm{y}}{1 / 2}=\frac{\mathrm{z}}{1}\)

\(\mathrm{L}_{3}=\frac{\mathrm{x}}{1}=\frac{\mathrm{y}}{2}=\frac{\mathrm{z}}{4}=\mathrm{k}\)

Coordinates of \(\mathrm{Q}(\mathrm{k}, 2 \mathrm{k}, 4 \mathrm{k})\)

DR's of \(\mathrm{PQ}=<\mathrm{k}-1,2 \mathrm{k}+1,4 \mathrm{k}-1>\)

\(\mathrm{PQ} \perp\) to \(\mathrm{L}_{3}\)

\((\mathrm{k}-1)+2(2 \mathrm{k}+1)+4(4 \mathrm{k}-1)=0\)

\(\mathrm{k}-1+4 \mathrm{k}+2+16 \mathrm{k}-4=0\)

\(\mathrm{k}=\frac{1}{7}\)

\(\mathrm{Q}\left(\frac{1}{7}, \frac{2}{7}, \frac{4}{7}\right)\)

\(\mathrm{PQ}=\sqrt{\left(1-\frac{1}{7}\right)^{2}+\left(-1-\frac{2}{7}\right)^{2}+\left(1-\frac{4}{7}\right)^{2}}\)

\(=\sqrt{\frac{36}{49}+\frac{81}{49}+\frac{9}{49}}\)

\(=\frac{\sqrt{126}}{7}\)

\(\mathrm{PQ}=\frac{3 \sqrt{14}}{7}\)

No related questions found

Welcome to Sarthaks eConnect: A unique platform where students can interact with teachers/experts/students to get solutions to their queries. Students (upto class 10+2) preparing for All Government Exams, CBSE Board Exam, ICSE Board Exam, State Board Exam, JEE (Mains+Advance) and NEET can ask questions from any subject and get quick answers by subject teachers/ experts/mentors/students.

...