Correct answer: 48
\( \frac{38}{3 \sqrt{5}} \hat{k}=\frac{(5 \hat{i}+5 \hat{j}-9 \hat{k})}{\sqrt{5}} \cdot\left|\begin{array}{ccc}\hat{i} & \hat{j} & \hat{k} \\ 2 & 3 & 4 \\ 1 & -3 & 2\end{array}\right|\)
\(\frac{38}{3 \sqrt{5}} \hat{\mathrm{k}}=\frac{19}{\sqrt{5}}\)
\(\mathrm{k}=\frac{19}{\sqrt{5}}\)
\(\mathrm{k}=\frac{3}{2}\)
\(\int\limits_{0}^{3 / 2}\left[\mathrm{x}^{2}\right]=\int\limits_{0}^{1} 0+\int\limits_{1}^{\sqrt{2}} 1+\int\limits_{\sqrt{2}}^{3 / 2} 2\)
\(=\sqrt{2}-1+2\left(\frac{3}{2}-\sqrt{2}\right)\)
\(=2-\sqrt{2}\)
\(\alpha=2\)
\(\Rightarrow 6 \alpha^{3}=48\)