Correct option is : (3) 1
\(\left.\begin{array}{l}\overline{\mathrm{r}}_{1}=(\lambda \hat{i}+4 \hat{j}+3 \hat{k})+\alpha(2 \hat{i}+3 \hat{j}+4 \hat{k}) \\ \bar{r}_{2}=(2 \hat{i}+4 \hat{j}+7 \hat{k})+\beta(2 \hat{i}+3 \hat{j}+4 \hat{k})\end{array}\right\} \begin{aligned} & \bar{b}=2 \hat{i}+3 \hat{j}+4 \hat{k} \\ & \bar{a}_{1}+\lambda \hat{i}+4 \hat{j}+3 \hat{k} \\ & \bar{a}_{2}=2 \hat{i}+4 \hat{j}+7 \hat{k}\end{aligned}\)
Shortest dist. \(=\frac{\left|\overline{\mathrm{b}} \times\left(\overline{\mathrm{a}}_{2}-\overline{\mathrm{a}}_{1}\right)\right|}{|\mathrm{b}|}=\frac{13}{\sqrt{29}}\)
\(\frac{|(2 \hat{i}+3 \hat{j}+4 \hat{k}) \times((2-\lambda) \hat{i}+4 \hat{k})|}{\sqrt{29}}=\frac{13}{\sqrt{29}}\)
\(|-8 \hat{\mathrm{j}}-3(2-\lambda) \hat{\mathrm{k}}+12 \hat{\mathrm{i}}+4(2-\lambda) \hat{\mathrm{j}}|=13\)
\(|12 \hat{\mathrm{i}}-4 \lambda \hat{\mathrm{j}}+(3 \lambda-6) \hat{\mathrm{k}}|=13\)
\(144+16 \ \lambda^{2}+(3 \lambda-6)^{2}=169\)
\(16 \lambda^{2}+(3 \lambda-6)^{2}=25\)
\(\Rightarrow\lambda =1\)