Correct answer is : 50
\(\mathrm{X}_{\mathrm{L}}=\omega \mathrm{L}=100 \times 1=100 \Omega\)
\(\mathrm{X}_{\mathrm{C}}=\frac{1}{\omega \mathrm{C}}=\frac{1}{100 \times 20 \times 10^{-6}}=500 \Omega\)
\(\mathrm{Z}=\sqrt{\left(\mathrm{X}_{\mathrm{L}}-\mathrm{X}_{\mathrm{C}}\right)^{2}+\mathrm{R}^{2}}\)
\(\sqrt{(100-500)^{2}+300^{2}}\)
\(\mathrm{Z}=500 \Omega\)
\(\mathrm{i}_{\mathrm{rms}}=\frac{\mathrm{V}_{\mathrm{rms}}}{\mathrm{Z}}=\frac{50}{500}=0.1 \mathrm{A}\)
rms voltage across capacitor
\(\mathrm{V}_{\text {rms }}=\mathrm{X}_{\mathrm{C}} \mathrm{i}_{\text {rms }}\)
\(=500 \times 0.1=50 \mathrm{V}\)