Correct option is (3) \(\sqrt{3.96}\)
Mean \( (\overline{\mathrm{x}})=10\)
\(\Rightarrow \frac{\Sigma \mathrm{x}_{\mathrm{i}}}{20}=10\)
\(\Sigma \mathrm{x}_{\mathrm{i}}=10 \times 20=200\)
If 8 is replaced by 12, then ∑xi = 200 - 8 + 12 + 204
∴ Correct mean\((\overline{\mathrm{x}})=\frac{\sum \mathrm{x}_{\mathrm{i}}}{20}\)
\(=\frac{204}{20}=10.2\)
∵ Standard deviation = 2
∴ Variance = (S.D.)2 = 22 = 4
\(\Rightarrow \frac{\Sigma \mathrm{x}_{\mathrm{i}}^{2}}{20}-\left(\frac{\Sigma \mathrm{x}_{\mathrm{i}}}{20}\right)^{2}=4\)
\(\Rightarrow \frac{\Sigma \mathrm{x}_{\mathrm{i}}^{2}}{20}-(10)^{2}=4\)
\(\Rightarrow \frac{\Sigma \mathrm{x}_{\mathrm{i}}^{2}}{20}=104\)
\(\Rightarrow \Sigma \mathrm{x}_{\mathrm{i}}^{2}=2080\)
Now, replaced '8' observations by '12'
Then, \(\Sigma x_{\mathrm{i}}^{2}=2080-8^{2}+12^{2}=2160\)
∴ Variance of removing observations
\(\Rightarrow \frac{\Sigma \mathrm{x}_{\mathrm{i}}^{2}}{20}-\left(\frac{\Sigma \mathrm{x}_{\mathrm{i}}}{20}\right)^{2}\)
\( \Rightarrow \frac{2160}{20}-(10.2)^{2}\)
\( \Rightarrow 108-104.04\)
\(\Rightarrow 3.96\)
Correct standard deviation
\(=\sqrt{3.96}\)