Correct option is : (2) \(\left[\mathrm{M} \ \mathrm{L}^{-1} \mathrm{~T}^{-2}\right]\)
\(E=\frac{K Q}{R^{2}}\)
\(\mathrm{E}=\frac{\mathrm{Q}}{4 \pi \varepsilon_{\mathrm{o}} \mathrm{R}^{2}}\)
\(\varepsilon_{0}=\frac{\mathrm{Q}}{4 \pi \mathrm{R}^{2} \mathrm{E}}\)
Now, \(\varepsilon_{0} \mathrm{E}^{2}=\frac{\mathrm{Q}}{4 \pi \mathrm{R}^{2} \mathrm{E}} \cdot \mathrm{E}^{2}=\frac{\mathrm{Q}}{4 \pi \mathrm{R}^{2}} \cdot \mathrm{E}\)
\(\left[\varepsilon_{0} \mathrm{E}^{2}\right]=\left[\frac{\mathrm{QE}}{\mathrm{R}^{2}}\right]=\frac{[\mathrm{Q}][\mathrm{E}]}{\left[\mathrm{R}^{2}\right]}=\frac{[\mathrm{Q}]\ \ \ [W]}{\left[\mathrm{R}^{2}\right][\mathrm{Q}][\mathrm{R}]}\)
\(=\frac{[\mathrm{W}]}{\left[\mathrm{R}^{3}\right]}=\frac{\mathrm{ML}^{2} \mathrm{~T}^{-2}}{\mathrm{~L}^{3}}=\mathrm{ML}^{-1} \mathrm{T}^{-2}\)