Use app×
QUIZARD
QUIZARD
JEE MAIN 2026 Crash Course
NEET 2026 Crash Course
CLASS 12 FOUNDATION COURSE
CLASS 10 FOUNDATION COURSE
CLASS 9 FOUNDATION COURSE
CLASS 8 FOUNDATION COURSE
+1 vote
13.6k views
in Mathematics by (46.6k points)
closed by

If the orthocentre of the triangle formed by the lines \(2 x+3 y-1=0, x+2 y-1=0\) and ax + by \( -1=0\), is the centroid of another triangle, whose circumecentre and orthocentre respectively are (3,4) and (-6,-8), then the value of |a-b| is ______.

1 Answer

+2 votes
by (49.9k points)
selected by
 
Best answer

Correct answer is : 16 

\(2 x+3 y-1=0\)

\(\mathrm{x}+2 \mathrm{y}-1=0\)

ax + by \( -1=0\)

If the orthocentre of the triangle formed by the lines

\(\left(\frac{6-6}{3}, \frac{8-8}{3}\right)\)

\(=(0,0)\)  

If the orthocentre of the triangle formed by the lines  

ax + by - 1 = 0

\(\left(\frac{1-0}{-1-0}\right)\left(\frac{-a}{b}\right)=-1\)

\(\Rightarrow-\mathrm{a}=\mathrm{b}\)

\(\Rightarrow \quad \mathrm{ax}-\mathrm{ay}-1=0\)

\(\mathrm{ax}-\mathrm{a}\left(1-\frac{2 \mathrm{x}}{3}\right)-1\)

\(\mathrm{x}\left(\mathrm{a}+\frac{2 \mathrm{a}}{3}\right)=\frac{\mathrm{a}}{3}\)

\(x=\frac{a+3}{5 a}\)

\(2\left(\frac{a+3}{5 a}\right)+3 y-1=0\)

\(y=\frac{1-\frac{2 a+6}{5 a}}{3}=\frac{3 a-6}{3 \times 5 a}\)

\(y=\frac{a-2}{5 a}\)

\(\frac{\left(\frac{a-2}{5 a}\right)}{\left(\frac{a+3}{5 a}\right)}=2 \Rightarrow a-2=2 a+6\)

\(\mathrm{a}=-8\)

\(\mathrm{b}=8\)

\(-8 x+8 y-1=0\)

\(|a-b|=16\) 

Welcome to Sarthaks eConnect: A unique platform where students can interact with teachers/experts/students to get solutions to their queries. Students (upto class 10+2) preparing for All Government Exams, CBSE Board Exam, ICSE Board Exam, State Board Exam, JEE (Mains+Advance) and NEET can ask questions from any subject and get quick answers by subject teachers/ experts/mentors/students.

...