Correct option is : (1) e
\(\operatorname{Lim}_{x \rightarrow 0} \frac{e-e^{\frac{1}{2 x} \ln (1+2 x)}}{x}\)
\(=\operatorname{Lim}_{x \rightarrow 0}(-e) \frac{\left(e^{\frac{\ln (1+2 x)}{2 x}-1}-1\right)}{x}\)
\(=\operatorname{Lim}\limits_{x \rightarrow 0}(-e) \frac{\ln (1+2 x)-2 x}{2 x^{2}}\)
\(=(-\mathrm{e}) \times(-1) \frac{4}{2 \times 2}=\mathrm{e}\)