Correct option is B,C,D
\(a x^{2}+2 b x y+c y^{2}>0\)
\(y, x \in \mathbb{R}-\{(0,0)\}\)
\(\Rightarrow c\left(\frac{y}{x}\right)^{2}+2 b\left(\frac{y}{x}\right)+a>0\)
\(4 b^{2}-4 a c<0\)
\(\Rightarrow b^{2}<a c\)
(A) \(\left(2, \frac{7}{2}, 6\right)\)
\(\left(\frac{7}{2}\right)^{2}>2 \times 6\)
\(\therefore\) option A is incorrect
(B) if \(\left(3, b, \frac{1}{12}\right) \in S\)
\(\Rightarrow b^{2}<3 \cdot \frac{1}{12}\)
\(\Rightarrow b^{2}<\frac{1}{4}\)
\(\Rightarrow 4 b^{2}<1\)
\(\Rightarrow|2 b|<1\) option B is correct
(C) ax + by = 1
bx + cy = – 1
\(D=\left|\begin{array}{ll}a & b \\ b & c\end{array}\right|=a c-b^{2} \neq 0\)
\(\therefore \) unique solution option C is correct.
(D) (a + 1)x + by = 0
bx + (c + 1)y = 0
\(D=\left|\begin{array}{cc}(a+1) & b \\ b & (c+1)\end{array}\right|\)
\(=(a+1)(c+1)-b^{2}\)
\(\Rightarrow a c-b^{2}+a+c+1\)
\(b^{2}<a c \Rightarrow a c \) is +ve
\(\Rightarrow a\) and c are positive then \(\left(a c-b^{2}\right)+a+c+1>0\)
\(\therefore\) unique solution
\(\therefore\) option D is correct.