Correct options are (B) \((-1,1) \in S\) and (C) \((1,-1) \in S\)
\(\lim\limits _{x \rightarrow \infty} \frac{\sin \left(x^{2}\right) \sin \left(\frac{1}{x^{2}}\right)(\ln x)^{\alpha}}{x^{\alpha \beta}(\ln (1+x))^{\beta}}=0\)
\(=\lim\limits _{x \rightarrow \infty} \frac{\left(\sin x^{2}\right) \sin \left(\frac{1}{x^{2}}\right) \frac{1}{x^{2}}}{\left(\frac{1}{x^{2}}\right) x^{\alpha \beta}(\ln (1+x))^{\beta}}=0\)
It is possible if \(\alpha \beta+2>0\)
\(\alpha \beta+2>0\)
(A) \(\alpha \beta=-3\)
(B) \(\alpha \beta=-1\)
(C) \(\alpha \beta=-1\)
(D) \(\alpha \beta=-2\)