Correct option is (C) (P) → (2) (Q) → (4) (R) → (3) (S) → (5)
\(x^2+x-1=0 \rightarrow\) roots are \(\alpha\) and \(\beta\)
\(\alpha+\beta=-1 \quad \alpha \beta=-1\)
Set \(T=\{1, \alpha, \beta\} \quad M=\left(a_{i j}\right)_{3 \times 3}\)
\(R_i=a_{i 1}+a_{i 2}+a_{i 3} \quad C_j=a_{1 j}+a_{2 j}+a_{3 j}\)
(P) \(R_i=C_j=0\) for all \(i, j\)
\(\alpha+\beta=-1 \quad T=\{1, \alpha, \beta\}\)
Number of matrices

(Q) Number of symmetric matrices = ?
\(C_j=0\) \(\forall\) j
Number of symmetric matrices
\(=\lfloor\underline{3} \times 1=6\left[\begin{array}{ccc} 1 & \alpha & \beta \\ \alpha & \beta & 1 \\ \beta & 1 & \alpha \end{array}\right]\)
(R) \(M \rightarrow\) skew symmetric of \(3 \times 3\)
\(|M|=0 \quad a_{i j} \in T \text { for } i>j\)
\(M\left(\begin{array}{l} x \\ y \\ z \end{array}\right)=\left(\begin{array}{c} a_{12} \\ 0 \\ -a_{23} \end{array}\right) \)
\( {\left[\begin{array}{ccc} 0 & -a_{21} & -a_{31} \\ a_{21} & 0 & -a_{32} \\ a_{31} & a_{32} & 0 \end{array}\right]\left[\begin{array}{l} x \\ y \\ z \end{array}\right]=\left[\begin{array}{c} a_{12} \\ 0 \\ -a_{23} \end{array}\right]}\)
As x, y, z ∈ R and \(a_{12}\) & \(a_{23}\) ∈ R & |M| = 0
\(\therefore\) System has infinite solutions.
(S) \(R_i=0 \forall i\)
\(M =\left[\begin{array}{ccc} 1 & \alpha & \beta \\ \alpha & \beta & 1 \\ \beta & 1 & \alpha \end{array}\right]\)
\(C_1 \rightarrow C_1 + C_2 + C_3 \) \(|M| =\left[\begin{array}{ccc} 1+\alpha +\beta & \alpha & \beta \\ 1+\alpha +\beta & \beta & 1 \\ 1+\alpha +\beta & 1 & \alpha \end{array}\right] = 0\)
\((P) \rightarrow (2) (Q) \rightarrow (4) (R) \rightarrow (3) (S) \rightarrow (5)\)