Correct answer: 2
\(2 \vec{p}+\vec{q}=5 \hat{i}+\hat{j}+7 \hat{k}\)
\(\vec{p}-2 \vec{q}=0 \hat{i}+3 \hat{j}+\hat{k} \)
\(\vec{p} \times \vec{q}=\left|\begin{array}{ccc}
\hat{i} & \hat{j} & \hat{k} \\
2 & 1 & 3 \\
1 & -1 & 1
\end{array}\right|=\hat{i}(4)-\hat{j}(-1)+\hat{k}(-3)\)
\(=4 \hat{i}+\hat{j}-3 \hat{k}\)
\(15 \hat{i}+10 \hat{j}+6 \hat{k}=\alpha(5 \hat{i}+\hat{j}+7 \hat{k})+\beta(3 \hat{j}+\hat{k})+\gamma(4 \hat{i}+\hat{j}-3 \hat{k})\)
\( \therefore 15=5 \alpha+4 \gamma \)
\( 10=\alpha+3 \beta+\gamma\)
\(6=7 \alpha+\beta-3 \gamma \)
\(\therefore \alpha=\frac{7}{5}, \beta=\frac{11}{5}, \gamma=2\)
\(\therefore \gamma=2\)