Correct option is (C) (P) → (3) (Q) → (4) (R) → (1) (S) → (5)
Vector parallel to the line \(L_1\left(\right. \text{say } \left.\vec{b}_1\right)=-\hat{i}+2 \hat{i}+3 \hat{k}\)

Normal vector of plane \((\vec {n})\) containing \(L_1\) and \(L_2\) will be perpendicular to both \(\vec {b _1}\) and \(\overrightarrow {AB}\)
\(\Rightarrow \vec{n}=p(\overrightarrow {A B} \times \vec{n})=p(5 \hat{i}-10 \hat{j}-25 \hat{k}) \times(i+2 \hat{j}+3 \hat{k})\)
\(=p(20 \hat{i}-40 \hat{j}+20 \hat{k})\)
\( \Rightarrow \hat{n}=\frac{1}{\sqrt{6}} \hat{i}-\frac{2}{\sqrt{6}} \hat{j}+\frac{1}{\sqrt{6}} \hat{k}\)
Now, vector parallel to \(L_2 (\text{say }\, \vec{b}_2 )\) is perpendicular to \(\vec{n} \Rightarrow \vec{b}_2 \cdot \vec{n}=0\)
\((3 \hat{i}+2 \hat{j}+\gamma \hat{k}) \cdot p(20 \hat{i}-40 \hat{j}+20 \hat{k})=0\)
\(\Rightarrow \gamma=1\)
Now, for point of intersection (POI)
\(L_1: \frac{x+11}{1}=\frac{y+21}{2}=\frac{z+29}{3}=\lambda \) and \(L_2: \frac{x+16}{3}=\frac{y+11}{2}=\frac{z+4}{\gamma}=u\)
Comparing x and y coordinates, \(-11 + \lambda = -16 + 3u \) and \(-21+2 \lambda=-11+2 u\)
\(\Rightarrow \lambda=10, u=5\)
\(\Rightarrow \text{POI i.e.}, \overrightarrow {OR}_1:(-\hat{i}-\hat{j}+\hat{k})\) and \(\overrightarrow {OR} \cdot \hat{n}=\sqrt{\frac{2}{3}}\)