Correct option is (D) \(\sqrt {\frac {2}{\sqrt {5}-1}}\)
Let, sides of right angled triangle \(\Delta \mathrm{ABC}\) are \(\mathrm{a},\) ar and \(\mathrm{ar}^2\). Assume \(\mathrm{r}>1\).
\(\therefore\left(a r^2\right)^2=a^2+a^2 r^2\)
or, \(a^2 r^4=a^2+a^2 r^2\)
or, \(\mathrm{r}^4=1+\mathrm{r}^2\)
or, \(\mathrm{r}^4-\mathrm{r}^2-1=0\)
Let, \(\mathrm{r}^2=\mathrm{t},\) then
\(\mathrm{t}^2-\mathrm{t}-1=\mathrm{O}\)
or, \(t=\frac{1 \pm \sqrt{1^2-4 \times(1) \times(-1)}}{2 \times 1}\)
or, \(t=\frac{1 \pm \sqrt{5}}{2}\)
or, \(\mathrm{t}=\frac{1+\sqrt{5}}{2}\) and \(\mathrm{t}=\frac{1-\sqrt{5}}{2}\)
or, \(\mathrm{r}^2=\frac{1+\sqrt{5}}{2}\) and \(\mathrm{r}^2=\frac{1-\sqrt{5}}{2}\) [Not possible]
\(\therefore \mathrm{r}^2=\frac{1+\sqrt{5}}{\underline{2}}\)
\(\Rightarrow r=\sqrt{\frac{1+\sqrt{5}}{2}}=\sqrt{\frac{2}{\sqrt{5}-1}}\)