Correct option is (3) \(\tan^{-1} \frac 74\)
As we know that horizontal component of projected velocity remains constant.
So, from question,
Horizontal velocity, ux = \(\frac{40 - 0}{2-0} = 20 m/s\)
And, initial vertical velocity (uy),
\(S_y= u_yt + \frac 12 at^2\)
\(50 = u_y(2) - \frac 12 (10)(2)^2\)
\(\Rightarrow u_y = \frac{70}2 = 35 m/s\)
\(\therefore \tan \theta = \frac{u_y}{u_x} = \frac{35}{20} = \frac 74\)
\(\Rightarrow\) Angle, \(\theta = \tan^{-1} \frac 74\)