Given curve is 4x3 – 3xy2 + 6x2 – 5xy – 8y2 + 9x + 14 = 0.
Differentiate both sides,
12x2 – 3y2 – 6xyy' + 12x – 5y – 5xy' – 16yy' + 9 = 0
Satisfy the point (–2, 3),
⇒ 48 – 27 + 36y' – 24 – 15 + 10y' – 48y' + 9 = 0
⇒ 2y' = –9
So, m1 = \(\frac{-9}2\) and m2 = \(\frac 29\)
The equation of tangent and normal is shown below:
T ≡ y – 3 = \(\frac{-9}2 (x + 2)\)
Put, y = 0
x = \(\frac{-4}3\)
N ≡ y – 3 = \(\frac 29 (x + 2)\)
Put, y = 0
x = \(\frac{-31}2\)
Therefore, area = \(\frac12\) × Base × Height
A = \(\frac 12 \times \left(\frac{-4}3 + \frac{31}2\right)(3)\)
\(= \frac 12 (\frac {85}6)(3)\)
\(= \frac{85}4\)
8A = 170