We have, \(\overrightarrow{BC} = \overrightarrow{AC}- \overrightarrow{AB}\) (from triangle law)
or \(\overrightarrow{BC} =(3\hat i - 3\hat j + 6\hat k) - (6\hat i + 3\hat j + 3\hat k)\)
\(= -3\hat i + 6\hat j + 3\hat k\)
Now, according to the question,
\(\overrightarrow{BD} = \overrightarrow {D'C} = \frac 1 3 \overrightarrow {BC} = (-\hat i - 2\hat j + \hat k)\)
\(\therefore \overrightarrow{AD} = \overrightarrow{BD} - \overrightarrow{BA} = \overrightarrow{BD} + \overrightarrow{AB} = (5\hat i + \hat j + 4\hat k)\)
And \( \overrightarrow{AD'} = \overrightarrow{AC} - \overrightarrow{D'C} = (4\hat i - \hat j + 5\hat k)\)