Answer: (b) only (S1)
\(\mathrm{A}(\mathrm{x}, \mathrm{y}, \mathrm{z})\) Let \(\mathrm{P}(0,3,2), \mathrm{Q}(2,0,3), \mathrm{R}(0,0,1)\)
\(\mathrm{AP}=\mathrm{AQ}=\mathrm{AR}\)
\(x^{2}+(y-3)^{2}+(z-2)^{2}=(x-2)^{2}+y^{2}+(z-3)^{2}=x^{2}+y^{2}+(z-1)^{2}\)
In xy plane z = 0
So, \(x^{2}-4 x+4+y^{2}+9=x^{2}+y^{2}+1\)
\(\Rightarrow \mathrm{y}=2\)
\(\mathrm{x}=3\)
\(9+y^{2}-6 y+9+4=x^{2}+y^{2}+1\)
So, \(\mathrm{A}(3,2,0)\ \text{also}\ \mathrm{B}(1,4,-1)\ \& \ \mathrm{C}(2,0,-2)\)
Now \(A B=\sqrt{4+4+1}=3\)
\(\mathrm{AC}=\sqrt{1+4+4}=3 \)
\( \mathrm{BC}=\sqrt{1+16+1}=\sqrt{18}\)
\(\mathrm{AB}=\mathrm{AC}\)
isosceles \(\Delta\ \& \ \mathrm{AB}^{2}+\mathrm{AC}^{2}=\mathrm{BC}^{2}\)
right angle \(\Delta\)
Area of \(\triangle \mathrm{ABC}=\frac{1}{2} \times\) base.height
\(\frac{1}{2} \times 3 \times 3=\frac{9}{2}\)
So only \(\mathrm{S}_{1}\) is true