Correct Answer: Option (2) \(\left({1\over4},-2\right)\)
Now,
\(f'(x) = {d(e^{-{\sqrt x}})\over dx} + {d(e^{-1\over x^2})\over dx}\)
\(f'(x) = {-e^{-{\sqrt x}}\over 2\sqrt{x}} + {2e^{-1\over x^2}\over x^3} \)
And so,
\(f''(x) = {1\over 4}\cdot {e^{-\sqrt{x}}\over x}\left({1\over \sqrt x} +1\right) + (-2)\cdot {e^{-1\over x^2}\over x^4}\left(3 - {2\over x^2}\right)\)
Comparing the coefficients of respectively terms,
we get the ordered pair (\(\alpha,\beta\)) as \(\left({1\over4},-2\right)\).