Use app×
QUIZARD
QUIZARD
JEE MAIN 2026 Crash Course
NEET 2026 Crash Course
CLASS 12 FOUNDATION COURSE
CLASS 10 FOUNDATION COURSE
CLASS 9 FOUNDATION COURSE
CLASS 8 FOUNDATION COURSE
0 votes
31 views
in Mathematics by (54.3k points)
closed by

क्या \(f(x)=\left\{\begin{array}{l}x+1, \text { if } x \geq 1 \\ x^{2}+1, \text { if } x<1\end{array}\right.\) द्वारा परिभाषित फलन एक संतत फलन है।

1 Answer

+1 vote
by (50.3k points)
selected by
 
Best answer

x > 1 के लिए, फलन एक सरल रेखा को निरूपित करता है और इसलिए यह संतत होगा।

x < 1 के लिए फलन, एक बहुपद है और इसलिए यह संतत होगा।

यदि कोई असंतत का बिन्दु है, तो यह सिर्फ x = 1 पर होगा।

\(\text { अब, } \begin{aligned} \operatorname{Lt}_{x \rightarrow 1-} f(x) & =\operatorname{Lt}_{h \rightarrow 0} f\left(1-h_{h}\right) \\ & =\operatorname{Lt}_{h \rightarrow 0}\left|(1-h)^{2}+1\right|=1+1=2 \\ \operatorname{Lt}_{x \rightarrow 1^{+}} f(x) & =\operatorname{Lt}_{h \rightarrow 0} f(1+h)=\operatorname{Lt}_{h \rightarrow 0}|(1+h)+1|=2 \end{aligned}\)

साथ ही. f(1) = 1 + 1 = 2

इसलिए, \(\mathrm{Lt}_{x \rightarrow 1-} f(x)=\mathrm{Lt}_{x \rightarrow 1+} f(x)=f(1).\)

अतः फलन x = 1 पर संतत है। अतः इस फलन का कोई असंतत का बिन्दु नहीं है।

Related questions

Welcome to Sarthaks eConnect: A unique platform where students can interact with teachers/experts/students to get solutions to their queries. Students (upto class 10+2) preparing for All Government Exams, CBSE Board Exam, ICSE Board Exam, State Board Exam, JEE (Mains+Advance) and NEET can ask questions from any subject and get quick answers by subject teachers/ experts/mentors/students.

Categories

...