Answer is "4"
\(f(x)+6 f\left(\frac{1}{x}\right)=\frac{35}{3 x}-\frac{7}{2}\)
\( f\left(\frac{1}{x}\right)+6 f(x)=\frac{35 x}{3}-\frac{7}{2} \)
\(36 f(x)+6 f\left(\frac{1}{x}\right)=70 x-21 \)
\(35 f(x)=(70 x-21)-\left[\frac{35}{3 x}-\frac{7}{2}\right] \)
\(35 f(x)=70 x-\frac{35}{3 x}-\frac{35}{2} \)
\(\Rightarrow f(x)=2 x-\frac{1}{3 x}-\frac{1}{2} \)
\(\lim _{x \rightarrow 0}\left(\frac{1}{\alpha x}+2 x-\frac{1}{3 x}-\frac{1}{2}\right)=\beta\)
Limit exist finitely if
\(\alpha=3 \Rightarrow \beta=-\frac{1}{2} \)
\((\alpha-2 \beta)=3-2\left(-\frac{1}{2}\right)=4\)