Correct option is (2) \(\frac{81}{2}\)
\(\mathrm{f}(\mathrm{x})=\frac{2^{\mathrm{x}}}{2^{\mathrm{x}}+\sqrt{2}}\)
\(\mathrm{f}(\mathrm{x})+\mathrm{f}(1-\mathrm{x})=\frac{2^{\mathrm{x}}}{2^{\mathrm{x}}+\sqrt{2}}+\frac{2^{1-\mathrm{x}}}{2^{1-\mathrm{x}}+\sqrt{2}} \)
\(=\frac{2^{\mathrm{x}}}{2^{\mathrm{x}}+\sqrt{2}}+\frac{2}{2+\sqrt{2} 2^{\mathrm{x}}}=\frac{2^{\mathrm{x}}+\sqrt{2}}{2^{\mathrm{x}}+\sqrt{2}}=1 \)
\(\text { Now, } \sum\limits_{\mathrm{k}=1}^{81} \mathrm{f}\left(\frac{\mathrm{k}}{82}\right)=\mathrm{f}\left(\frac{1}{82}\right)+\mathrm{f}\left(\frac{2}{82}\right)+\ldots \ldots+\mathrm{f}\left(\frac{81}{82}\right) \)
\(=\mathrm{f}\left(\frac{1}{82}\right)+\mathrm{f}\left(\frac{2}{82}\right)+\ldots \ldots+\mathrm{f}\left(1-\frac{2}{82}\right)+\mathrm{f}\left(1-\frac{1}{82}\right) \)
\(=\left[\mathrm{f}\left(\frac{1}{82}\right)+\mathrm{f}\left(1-\frac{1}{82}\right)\right]+\left[\mathrm{f}\left(\frac{2}{82}\right)+\mathrm{f}\left(1-\frac{2}{82}\right)\right]+\ldots . .40 \text { cases }+\mathrm{f}\left(\frac{41}{82}\right) \)
\(=(1+1+\ldots 40 \text { times })+\frac{2^{1 / 2}}{2^{1 / 2}+2^{1 / 2}} \)
\(40+\frac{1}{2}=\frac{81}{2}\)