Correct option is: (1) \(\frac{21}{4} \pi^{2}\)
\(1+10 \operatorname{Re}\left(\frac{2 \cos \theta+i \sin \theta}{\cos \theta-3 i \sin \theta}\right)=0\)
\(\therefore \mathrm{z}+\overline{\mathrm{z}}=2 \operatorname{Re}(\mathrm{z})\)
\(\frac{2 \cos \theta+\mathrm{i} \sin \theta}{\cos \theta-3 \mathrm{i} \sin \theta}+\frac{2 \cos \theta-\mathrm{i} \sin \theta}{\cos \theta+3 \mathrm{i} \sin \theta}=2 \times\left(\frac{-1}{10}\right)\)
\(\frac{\left(2 \cos ^{2} \theta-3 \sin ^{2} \theta\right)+\left(2 \cos ^{2} \theta\right)-\left(3 \sin ^{2} \theta\right)}{\cos ^{2} \theta+9 \sin ^{2} \theta}=\frac{-2}{10}\)
\(\Rightarrow \frac{2 \cos ^{2} \theta-3 \sin ^{2} \theta}{\cos ^{2} \theta+9 \sin ^{2} \theta}=\frac{-1}{10}\)
\(\Rightarrow 20 \cos ^{2} \theta-30 \sin ^{2} \theta=-\cos ^{2} \theta-9 \sin ^{2} \theta\)
\(21 \cos ^{2} \theta-21 \sin ^{2} \theta=0\)
\(\Rightarrow \cos 2 \theta=0\)
\(2 \theta=\frac{\pi}{2}, \frac{3 \pi}{2}, \frac{5 \pi}{2}, \frac{7 \pi}{2}\)
\(\Rightarrow \sum \theta^{2}=\frac{\pi^{2}}{16}+\frac{9 \pi^{2}}{16}+\frac{25 \pi^{2}}{16}+\frac{49 \pi^{2}}{16}=\frac{84 \pi^{2}}{16}=\frac{21 \pi^{2}}{4}\)