Use app×
QUIZARD
QUIZARD
JEE MAIN 2026 Crash Course
NEET 2026 Crash Course
CLASS 12 FOUNDATION COURSE
CLASS 10 FOUNDATION COURSE
CLASS 9 FOUNDATION COURSE
CLASS 8 FOUNDATION COURSE
0 votes
18 views
ago in Mathematics by (44.2k points)

Let \(\mathrm{A}=\left\{\theta \in[0,2 \pi]: 1+10 \operatorname{Re}\left(\frac{2 \cos \theta+\mathrm{i} \sin \theta}{\cos \theta-3 \mathrm{i} \sin \theta}\right)=0\right\}.\) Then \(\sum\limits_{\theta \in \mathrm{A}} \theta^{2}\) is equal to

(1) \(\frac{21}{4} \pi^{2}\)

(2) \(8 \pi^{2}\)

(3) \(\frac{27}{4} \pi^{2}\)

(4) \(6 \pi^{2}\) 

Please log in or register to answer this question.

1 Answer

0 votes
ago by (44.6k points)

Correct option is: (1) \(\frac{21}{4} \pi^{2}\)  

\(1+10 \operatorname{Re}\left(\frac{2 \cos \theta+i \sin \theta}{\cos \theta-3 i \sin \theta}\right)=0\)

\(\therefore \mathrm{z}+\overline{\mathrm{z}}=2 \operatorname{Re}(\mathrm{z})\)

\(\frac{2 \cos \theta+\mathrm{i} \sin \theta}{\cos \theta-3 \mathrm{i} \sin \theta}+\frac{2 \cos \theta-\mathrm{i} \sin \theta}{\cos \theta+3 \mathrm{i} \sin \theta}=2 \times\left(\frac{-1}{10}\right)\)

\(\frac{\left(2 \cos ^{2} \theta-3 \sin ^{2} \theta\right)+\left(2 \cos ^{2} \theta\right)-\left(3 \sin ^{2} \theta\right)}{\cos ^{2} \theta+9 \sin ^{2} \theta}=\frac{-2}{10}\)

\(\Rightarrow \frac{2 \cos ^{2} \theta-3 \sin ^{2} \theta}{\cos ^{2} \theta+9 \sin ^{2} \theta}=\frac{-1}{10}\)

\(\Rightarrow 20 \cos ^{2} \theta-30 \sin ^{2} \theta=-\cos ^{2} \theta-9 \sin ^{2} \theta\)

\(21 \cos ^{2} \theta-21 \sin ^{2} \theta=0\)

\(\Rightarrow \cos 2 \theta=0\)

\(2 \theta=\frac{\pi}{2}, \frac{3 \pi}{2}, \frac{5 \pi}{2}, \frac{7 \pi}{2}\)

\(\Rightarrow \sum \theta^{2}=\frac{\pi^{2}}{16}+\frac{9 \pi^{2}}{16}+\frac{25 \pi^{2}}{16}+\frac{49 \pi^{2}}{16}=\frac{84 \pi^{2}}{16}=\frac{21 \pi^{2}}{4}\) 

Welcome to Sarthaks eConnect: A unique platform where students can interact with teachers/experts/students to get solutions to their queries. Students (upto class 10+2) preparing for All Government Exams, CBSE Board Exam, ICSE Board Exam, State Board Exam, JEE (Mains+Advance) and NEET can ask questions from any subject and get quick answers by subject teachers/ experts/mentors/students.

...