Answer is: 6
\(\because \mathrm{A}\) is orthogonal matrix
\(\therefore A^{T}=A^{-1}\)
\(\Rightarrow \mathrm{A}^{2}=\mathrm{A}^{-1} \quad \left(\because A^{2}=A^{T}\right)\)
\(\Rightarrow A^{3}=I\)
let \(\mathrm{B}=(\mathrm{A}+\mathrm{I})^{3}+(\mathrm{A}-\mathrm{I})^{3}-6 \mathrm{~A}\)
\(=2\left(\mathrm{~A}^{3}+3 \mathrm{~A}\right)-6 \mathrm{~A}\)
\(=2 \mathrm{~A}^{3}\)
\(B=2 I=\left[\begin{array}{lll}2 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 2\end{array}\right]\)
Now sum of diagonal elements = 2 + 2 + 2 = 6