Use app×
QUIZARD
QUIZARD
JEE MAIN 2026 Crash Course
NEET 2026 Crash Course
CLASS 12 FOUNDATION COURSE
CLASS 10 FOUNDATION COURSE
CLASS 9 FOUNDATION COURSE
CLASS 8 FOUNDATION COURSE
0 votes
18 views
ago in Mathematics by (44.1k points)

Let \(A=\{z \in C:|z-2-i|=3\},\) \(B=\{z \in C: \operatorname{Re}(z-i z)=2\}\ \text{and}\ S=A \cap B.\) Then \(\sum\limits_{z \in S}|z|^{2}\) is equal to _____. 

Please log in or register to answer this question.

1 Answer

0 votes
ago by (44.5k points)

Answer is: 22 

Let z = x + iy

\( |z-2-i|=3 \Rightarrow(x-2)^2+(y-1)^2=3^2 \)

\( \operatorname{Re}(z-i z)=\operatorname{Re}(x+i y-i x+y)=x+y \Rightarrow x+y=2 \)

\( \Rightarrow A=\left\{(x, y):(x-2)^2+(y-1)^2=3^2, x, y \in R\right\}, \)

\( B=\{(x, y): x+y=2\} \)

\(\Rightarrow x-2=-y \Rightarrow y^2+(y-1)^2=3^2 \)

\(\Rightarrow 2 y^2-2 y-8=0 \Rightarrow y^2-y-4=0 \)

\( y_1+y_2=1, y_1 y_2=-4 \)

\( \Rightarrow y_1^2+y_2^2 \)

\(=\left(y_1+y_2\right)^2-2 y_1 y_2=9 \)

\( \Rightarrow x_1+x_2=4\left(y_1+y_2\right)=3, \)

\( x_1 x_2=\left(2-y_1\right)\left(2-y_2\right)=4-2\left(y_1+y_2\right)+y_1 y_2=-2 \)

\(\Rightarrow x_1^2+x_2^2=\left(x_1+x_2\right)^2-2 x_1 x_2=13 \)

\( \because S=\left\{\left(x_1, y_1\right),\left(x_2, y_2\right)\right\} \)

\( \Rightarrow \sum\limits_{z \in S}|z|^2=\left(x_1^2+y_1^2\right)+\left(x_2^2+y_2^2\right)=22\) 

Welcome to Sarthaks eConnect: A unique platform where students can interact with teachers/experts/students to get solutions to their queries. Students (upto class 10+2) preparing for All Government Exams, CBSE Board Exam, ICSE Board Exam, State Board Exam, JEE (Mains+Advance) and NEET can ask questions from any subject and get quick answers by subject teachers/ experts/mentors/students.

...