Correct option is (1) 1
\(\int_0^x \text{tf}(t) d t=x^2 f(x)\)
Differentiating both sides w.r.t 'x'
\(x f(x)=x^2 f(x)+2 x f(x) \)
\(\frac{x^2 d y}{d x}+x y=0 \)
\(\frac{d y}{y}=\frac{-d x}{x} \)
\(\ln y+\ln x=\ln c \)
\(y x=c \)
\(\text{As}\ f(2)=3 \)
6 = c
\(\therefore y x=6 \)
\(\therefore \text { Put } x=6 \)
y(6) = 6
y = 1