dy = cos x dx
By trigonometric identities, cos x = √1 - sin2x. Then the above equation becomes,
dy = √1 - sin2x dx
dy = √1 - y2 dx
dy / √1 - y2 = dx
Multiplying both sides by sin x,
(sin x dy) / √1 - y2 = sin x dx
Again substitute sin x = y on the left side.
(y dy) / √1 - y2 = sin x dx
Integrating on both sides,
∫ (y dy) / √1 - y2 = ∫ sin x dx
Let 1 - y2 = u. Then -2y dy = du (or) y dy = -1/2 du.
Then the above left-hand side integral becomes,
(-1/2) ∫ 1/√u du = ∫ sin x dx
(-1/2) ∫ u-1/2 du = ∫ sin x dx
Using one of the integration formulas, ∫ xn dx = (xn+1)/(n+1) + C. So we get
(-1/2) (u1/2 / (1/2)) + C = ∫ sin x dx
-u1/2 + C = ∫ sin x dx
Substituting u = 1 - y2 back here,
-(1 - y2)1/2 + C = ∫ sin x dx
Substitute y = sin x back here,
-(1 - sin2x)1/2 + C = ∫ sin x dx
-(cos2x)1/2 + C = ∫ sin x dx
-cos x + C = ∫ sin x dx