Correct option is (2) 25
Let the L3 be
\(\frac{x-\alpha}{a}=\frac{y-\beta}{b}=\frac{z-\gamma}{c},(a \hat{i}+\hat{b}+c \hat{k})\) is parallel to
\((\hat{i}-\hat{j}+2 \hat{k}) \times(-\hat{i}+2 \hat{j}+\hat{k}) \)
(a, b, c) = (5, 3, 1)
\(\Rightarrow \frac{x-\alpha}{5}=\frac{y-\beta}{3}=\frac{z-\gamma}{-1}\)
\(\Rightarrow \text{Let the point of intersection be}\ P.\)
\(\Rightarrow 5 \lambda+\alpha=P+1,3 \lambda+\beta=P+2,-\lambda+\gamma=2 P+1 \)
\(\Rightarrow \alpha=(P+1-5 \lambda), \beta=(-P+2-3 \lambda), \gamma=(2 P+1+\lambda) \)
\(\Rightarrow|5 \alpha-11 \beta-8 \gamma|=|-25|=25\)