The correct option is (B) \(\frac{\pi^3}{32}\)
Lets sin-1 x = a and tan-1 x = b
We know that:
a3 + b3 = (a + b)(a2 − ab + b2)
1. For a = sin-1 x:
sin a = x
2. For b = tan-1 x:
tan b = x
Let's x = \(\frac{1}{\sqrt 2}\).
For x = \(\frac{1}{\sqrt 2}\), we have:
\(sin^{-1} \frac{1}{\sqrt2} = \frac{\pi}{4}\)
\(tan^{-1} \frac{1}{\sqrt2} = \frac{\pi}{4}\)
Now:
a3 + b3
= \((\frac{\pi}{4})^3 +(\frac{\pi}{4})^3\)
= \(2 \times (\frac{\pi}{4})^3\)
= \(2 \times \frac{\pi^3}{64}\)
= \(\frac{\pi^3}{32}\)