To calculate the number of ideal gas molecules per cubic centimeter, we can use the ideal gas equation:
PV = nRT
Where:
Given the temperature T = 27°C = 300 K and the pressure P = 10⁻¹¹ mm Hg:
Convert the pressure to Pascals (Pa):
\(10^{-11} \, \text{mm Hg} \times 133.322 \, \text{Pa/mm Hg} = 1.33322 \times 10^{-9} \, \text{Pa}\)
Rearrange the ideal gas equation to solve for n/V (number of moles per unit volume):
n/V = PRT
Substitute the values:
\(\frac{1.33322 \times 10^{-9}}{8.314 \times 300} = 5.35 \times 10^{-13} \, \text{mol/m}^3\)
Convert \(\text{mol/m}^3 \ to \text{ mol/cm}^3:\)
5.35×10⁻¹³ \(\text{mol/m}^3\) = 5.35×10⁻¹⁹ \(\text{mol/cm}^3\)
Using Avogadro's number (\(6.022 \times 10^{23} \, \text{molecules/mol}\)):
\(5.35 \times 10^{-19} \times 6.022 \times 10^{23} = 3.22 \times 10^5 \, \text{molecules/cm}^3\)
So, the number of ideal gas molecules per cubic centimeter is:
\(\boxed{3.22 \times 10^5}\)
The correct answer is option 4.