Correct option is (1) \(2-\sqrt{3}\)

\(\vec{c}=\alpha \vec{a}+\beta \vec{b}\) ...(1)
\(\overrightarrow{\mathrm{a}} \cdot \overrightarrow{\mathrm{c}}=\alpha \overrightarrow{\mathrm{a}} \cdot \vec{a}+\beta \overrightarrow{\mathrm{b}} \cdot \overrightarrow{\mathrm{a}}\)
\(0=\alpha+\beta \cos 15^{\circ}\) ....(2)
\((1) \Rightarrow \overrightarrow{\mathrm{b}} \cdot \overrightarrow{\mathrm{c}}=\alpha \overrightarrow{\mathrm{a}} \cdot \overrightarrow{\mathrm{b}}+\beta \overrightarrow{\mathrm{b}} \cdot \overrightarrow{\mathrm{b}}\)
\(\Rightarrow \cos 75^{\circ}=\alpha \cos 15^{\circ}+\beta\) ...(3)
\((2)\ \& \ (3) \Rightarrow \cos 75^{\circ}=-\beta \cos ^{2} 15^{\circ}+\beta\)
\(\beta=\frac{\cos 75^{\circ}}{\sin ^{2} 15^{\circ}}=\frac{1}{\sin 15^{\circ}}=\frac{2 \sqrt{2}}{\sqrt{3}-1}\)
\((2) \Rightarrow \alpha=\frac{-\cos 15^{\circ}}{\sin 15^{\circ}}=\frac{-(\sqrt{3}+1)}{(\sqrt{3}-1)}\)
\(\therefore \overrightarrow{\mathrm{c}}=\frac{-(\sqrt{3}+1)}{(\sqrt{3}-1)} \overrightarrow{\mathrm{a}}+\left(\frac{2 \sqrt{2}}{\sqrt{3}-1}\right) \overrightarrow{\mathrm{b}}\)
Now
\(\alpha+\sqrt{2}(\sqrt{3}-1) \beta=\frac{-(\sqrt{3}+1)}{(\sqrt{3}-1)}+\frac{\sqrt{2}(\sqrt{3}-1) \cdot 2 \sqrt{2}}{\sqrt{3}-1}\)
\(=\frac{-(\sqrt{3}+1)^{2}}{2}+4\)
\(=\frac{-3-1-2 \sqrt{3}+8}{2}\)
\(=2-\sqrt{3}\)