Correct option is (3) 13
\((1+\mathrm{x})^{\mathrm{p}}(1-\mathrm{x})^{q}=\left({ }^{\mathrm{p}} \mathrm{C}_{0}+{ }^{\mathrm{p}} \mathrm{C}_{1} \mathrm{x}+{ }^{\mathrm{p}} \mathrm{C}_{2} \mathrm{x}^{2}+\ldots\right)\left({ }^{q} \mathrm{C}_{0}-{ }^{q} \mathrm{C}_{1} \mathrm{x}+{ }^{q} \mathrm{C}_{2} \mathrm{x}^{2}+\ldots\right)\)
coff of \(\mathrm{x} \equiv{ }^{\mathrm{p}} \mathrm{C}_{0}{ }^{\mathrm{q}} \mathrm{C}_{1}-{ }^{\mathrm{p}} \mathrm{C}_{1}{ }^{\mathrm{q}} \mathrm{C}_{0}=1\)
p - q = 1
coff of \(x^{2} \equiv{ }^{\mathrm{p}} \mathrm{C}_{0}{ }^{\mathrm{q}} \mathrm{C}_{2}-{ }^{\mathrm{p}} \mathrm{C}_{1}{ }^{\mathrm{q}} \mathrm{C}_{1}+{ }^{\mathrm{p}} \mathrm{C}_{2}{ }^{\mathrm{q}} \mathrm{C}_{0}=-2\)
\(\frac{q(q-1)}{2}-p q+\frac{p(p-1)}{2}=-2\)
\(q^{2}-q-2 p q+p^{2}-p=-4\)
\((p-q)^{2}-(p+q)=-4\)
p + q = 5
\(\mathrm{p}=3\)
\(\mathrm{q}=2\)
so \(\mathrm{p}^{2}+\mathrm{q}^{2}=13\)