Use app×
QUIZARD
QUIZARD
JEE MAIN 2026 Crash Course
NEET 2026 Crash Course
CLASS 12 FOUNDATION COURSE
CLASS 10 FOUNDATION COURSE
CLASS 9 FOUNDATION COURSE
CLASS 8 FOUNDATION COURSE
0 votes
2.9k views
in Mathematics by (44.5k points)
closed by

Let \(\alpha, \beta\) be the roots of the equation \(x^{2}-a x-b=0\) with \(\operatorname{Im}(\alpha)<\operatorname{Im}(\beta).\) Let \(P_{n}=\alpha^{n}-\beta^{n}.\) If \(P_{3}=-5 \sqrt{7} i, \ P_{4}=-3 \sqrt{7} i, \ P_{5}=11 \sqrt{7} i\) and \(P_{6}=45 \sqrt{7} i,\) then \(\left|\alpha^{4}+\beta^{4}\right|\) is equal to _______.

1 Answer

+1 vote
by (44.1k points)
selected by
 
Best answer

Answer is: 31 

\(\alpha+\beta=\mathrm{a} \quad \alpha \beta=-\mathrm{b}\)

\(\mathrm{P}_{6}=\mathrm{aP}_{5}+\mathrm{bP}_{4}\)

\(45 \sqrt{7} \mathrm{i}=\mathrm{a} \times 11 \sqrt{7} \mathrm{i}+\mathrm{b}(-3 \sqrt{7}) \mathrm{i}\) 

\(45=11 \mathrm{a}-3 \mathrm{~b}\)  ...(1)

and

\(\mathrm{P}_{5}=\mathrm{aP}_{4}+\mathrm{bP}_{3}\)

\(11 \sqrt{7} \mathrm{i}=\mathrm{a}(-3 \sqrt{7} \mathrm{i})+\mathrm{b}(-5 \sqrt{7} \mathrm{i})\)

\(11=-3 \mathrm{a}-5 \mathrm{~b}\)    ...(2)

\(\mathrm{a}=3, \mathrm{~b}=-4\)

\(\left|\alpha^{4}+\beta^{4}\right|=\sqrt{\left(\alpha^{4}-\beta^{4}\right)^{2}+4 \alpha^{4} \beta^{4}}\)

\(=\sqrt{-63+4.4^{4}}\)

\(=\sqrt{-63+1024}=\sqrt{961}=31\)

Welcome to Sarthaks eConnect: A unique platform where students can interact with teachers/experts/students to get solutions to their queries. Students (upto class 10+2) preparing for All Government Exams, CBSE Board Exam, ICSE Board Exam, State Board Exam, JEE (Mains+Advance) and NEET can ask questions from any subject and get quick answers by subject teachers/ experts/mentors/students.

Categories

...