Answer is: 31
\(\alpha+\beta=\mathrm{a} \quad \alpha \beta=-\mathrm{b}\)
\(\mathrm{P}_{6}=\mathrm{aP}_{5}+\mathrm{bP}_{4}\)
\(45 \sqrt{7} \mathrm{i}=\mathrm{a} \times 11 \sqrt{7} \mathrm{i}+\mathrm{b}(-3 \sqrt{7}) \mathrm{i}\)
\(45=11 \mathrm{a}-3 \mathrm{~b}\) ...(1)
and
\(\mathrm{P}_{5}=\mathrm{aP}_{4}+\mathrm{bP}_{3}\)
\(11 \sqrt{7} \mathrm{i}=\mathrm{a}(-3 \sqrt{7} \mathrm{i})+\mathrm{b}(-5 \sqrt{7} \mathrm{i})\)
\(11=-3 \mathrm{a}-5 \mathrm{~b}\) ...(2)
\(\mathrm{a}=3, \mathrm{~b}=-4\)
\(\left|\alpha^{4}+\beta^{4}\right|=\sqrt{\left(\alpha^{4}-\beta^{4}\right)^{2}+4 \alpha^{4} \beta^{4}}\)
\(=\sqrt{-63+4.4^{4}}\)
\(=\sqrt{-63+1024}=\sqrt{961}=31\)