Correct option is (1) 3
\(f(x)=\left(x^2-1\right)\left|x^2-a x+2\right|+\cos |x|\)
Notice that \(\cos (-x)=\cos x=\cos |x|\) which means \(\cos |x|\) is differentiable
everywhere in \(x \in R\)
\(\Rightarrow f(x)\) can be non differentiable where \(\left|x^2-a x+2\right|\)
= 0

\( \Rightarrow 4-2 a+2=0 \Rightarrow a=3 \)
\(\Rightarrow\left(x^2-3 x+2\right)=0 \quad \Rightarrow x=1,2 \)
\( \beta=1\)
but f(x) is differentiable at x = 1.
so it should be bonus.
distance of \((\alpha, \beta)\) from line
\(12 x+5 y+10=0 \)
\(\Rightarrow \frac{|2(12)+5(1)+10|}{13}=\frac{39}{13}=3\)